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Quick review

Our goal is to provide selective inference: (a) making correct statistical
discoveries (b) providing valid inference for our discoveries

Frequentist perspective:

1. BH procedure correctly discovers non-null effects and classifies sign of
effects

2. FCR control a frequentist mechanism for constructing valid marginal
CI’s for selected parameters

Bayesian perspective (i.e. two group model):

1. Derived the Bayes classifier (test statistic = local FDR)

2. Two group model applies for a randomly selected selected component
3. Bayesian FDR is controlled by eBayes

4. BH can be expressed as eBayes classifier whose statistic is the p-value
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Motivation

Replicability in multiple GWAS — work with Ruth Heller

Genome-wide Association Studies try to identify genetic variants that are
associated with a given phenotype.

e Replicability analysis aims to discover associations between SNP and
phenotype that are present in more than one of the studies ( i.e. for each
SNP, test null hypothesis that the SNP is associated with the phenotype
in 1 or less studies)

e Meta-analysis combines several GWAS for increased power to discover
genetic variants that are associated in at least one study ( i.e. for each
SNP, test null hypothesis that the SNP is associated with the phenotype
in O studies)

Kraft, Zeggini and Ioannidis *09 effects in GWAS may be as small as
population genetic biases, important to see associations in several studies
conducted using a similar, but not identical, study base.
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Motivation

Analyses of Type 2 diabetes GWAS

Data from 6 GWAS testing association with T2D, same 2.5 x 10% SNPs in
each study.

e Frequentist FDR analysis (Benjamini, Heller and Yekutieli *09)

1. Compute p-value for each SNP to test (1) no association (2) no-replication
2. Apply BH procedure at level 0.05 to each set of 2.5M p-values
3. Results: 466 associated SNP, replicated associations for 113 SNP in

5 genomic regions

e Bayesian FDR analysis (Heller and Yekutieli *13)
1. eBayes level 0.05 FDR controlling approach for testing (1) no association
(2) no-replication
2. Results: 803 associated SNP, replicated associations for 219 SNP in
17 genomic regions

Surprise: Bayesian FDR procedure usually don’t offer considerably more
power than the BH procedure!
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Motivation

Is it real?

Extensive simulation:

e Bayesian FDR procedure has more power than BH procedure for
discovering associations, and considerably more (7-15 fold) power for
discovering replicated associations!

e Bayesian FDR procedure controls the FDR at nominal level (simulation
mean FDP = 0.05) for large studies, slightly under-conservative
(simulation mean FDP = 0.07) for smaller studies.

e BH procedure slightly over-conservative (simulation mean FDP = 0.04)
for testing no association, highly over-conservative (simulation mean
FDP < 0.001) for testing no replication.
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Plan

1. eBayes replicability analysis
GWAS analysis results

Why is the eBayes proc much more power than BH?

Sl

Illustrate on simulated data
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eBayes replicability analysis

Bayesian FDR replicability analysis

Notations

SNP’s are indexed by j = 1 --- M (= 2.5 x 10%)
Studies are indexedby i =1---n (= 6)

The Parameter for SNP j is the association status FIJ = (Hy;- - - Hyj) with
Hij S {— 1 , 0, 1 }

e The observation vector for SNP j is Z; = (Zy; - - - Z,j) where Z;; is log-OR
z-score for testing no association between SNP j and T2D in Study i.
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eBayes replicability analysis

Hypotheses of interest for n studies

o H={h=(hi,....hy) :hi € {—1,0,1}}
e The null hypotheses we test correspond to H’ C H:

1. HY, is the no association null hypothesis that the SNP is not associated
with the phenotype in any of the studies that corresponds to

IHR/A ={(0,0,---,0)}

2. HY is the no replicability null hypothesis that the SNP is positively and
negatively associated with the phenotype in at most one study that
corresponds to

Moy ={h: #hi=—1)<10n #H=1)<1}
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eBayes replicability analysis

Generalization of the two-group model

e Pr(Hj = h) = w(h) forh € H.

e Conditional on the association status H; = E

H S (zi)

with f _1(z), fi,—1(z) and f; 1 (z) the marginal z-score density in study i
for SNP’s that are negatively dependent, independent and positively
dependent with T2D

e The marginal (mixture) density is

e
ml

[

f@) = w(h) -fGIH = h)

heH
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eBayes replicability analysis

The Bayes FDR for n studies

e For H° C H, the local Bayes FDR for Zjis

fdrypo (@) = Pr(H;e HOZ) = Y Pr(H; = hl3)

e The Bayes FDR for subset Z C R" is
Fdryp(2) = Pr(H; € HO|Z) € Z) = Ef(fdryp(3)|3; € 2).

e The optimal rejection region among all possible rejection regions that are
constrained to have a Bayes FDR of at most level g, is

Zoryo =121 fdryp(2) < 6(q)}
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eBayes replicability analysis

Empirical Bayes approach

1. For each study use locfdr to estimate the z-score densities
2. Use EM algorithm to find MLE for 7
3. Compute local fdr’s for each SNP

4. Use local fdr’s to construct tests no-association and no-replicability
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eBayes replicability analysis
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eBayes replicability analysis

The composite likelithood

e Given the marginal z-score densities we can compute the likelihood for

SNP j
L(7:3.f) = Pe(G| @) = Y w(h) - f(G1H = h)
heH

e Note that to compute the complete likelihood we need to know the joint
distribution of (H, - - - Hy) and the joint distribution of (Z; - - - Zy) given
(Hy ---Hy)

e Instead we consider the composite likelihood that have similar MLE in
large problems with local dependencies

M
L (72 f) = Pr(Z) - 2u| 7) = HL(ﬁ;zﬁf)
j=1

e We use EM the find MLE for 7
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eBayes replicability analysis

eBayes testing procedure

e The local FDR is

fdry(@) = Y 70 [ [fin(za) 1 (3)

fewo il

e The Bayes FDR for rejection region I is

o Samerdr(E)
FdrHo(F)— #{kaEZ}

e The eBayes optimal rejection region is
Ly = {3 : fdry,(3) < 0(q) }
where §(g) is the largest threshold for which @Ho(F) <gq
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GWAS replicability results

Posterior configuration probabilities for two SNPs

The estimated posterior probabilities for different configurations h, conditional on the
binned z-score of Z, for two example z-scores: 17903146 in gene TCFTL2 (column 2),
and rs10923031 in gene NOTCH? (column 3).

I 7= (-88,-45 —44,-75) 7= (-34,-40,-0.12,-28)

(11, 1,) 0.080 0.000
(110 1) 0.012 0.024
(-1, 100) 0,000 0.047
(-1,0,-1,-1) 0.008 0.000
(100 ) 0,000 0.004

m1on 0.000 0.024
(0,-1,0,0) 0,000 0.001
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GWAS replicability results

Analysis results

For the SNPs with strongest evidence towards replicability in 17 distinct regions

discovered by the empirical Bayes replicability analysis: the estimated Bayes FDR for
replicability and for association (column 5-6); the adjusted p-values from the analysis of
BHY09 for replicability and for association (column 7-8).

Empirical Bayes Fdr

BHYO09 adjusted p-values

chr pos  gene Replicability ~ Association  Replicability — Association

rs7903146 10 114758349 TCFT7L2 2.40e-11 4.61e-22 0.00e+00 0.00e+00
1510440833 6 20688121 CDKALIL 1.60e-05 8.06e-08 9.06e-09 0.00e+00
rs5015480 10 94465559  non-coding 1.10e-03 7.74e-05 8.78e-04 1.12e-07
rs4402960 3 185511687 IGF2BP2 3.14e-03 6.87e-04 0.0205 3.51e-05
's5215 11 17408630  KCNJ11 8.91e-03 4.50e-03 1.00e+4-00 0.0236

11 17418477  ABCCS 9.98¢-03 6.16e-03 1.00e4-00 0.0267

10 94414567  KIF11 0.0111 2.96e-04 1.00e+00 1.55e-05

rs10923931 1 120517959 NOTCH2 0.0134 2.70e-03 1.00e+00 3.45e-04
1511187033 10 94262359  IDE 0.0189 2.07e-03 0.0186 7.07e-06
15319602 5 134222164 TXNDCI5 0.0202 7.07e-03 1.00e+-00 0.0364
15849134 7 28196222  JAZF1 0.0210 7.80e-03 9.84e-01 1.16e-03
rs6883047 5 PCBD2 0.0235 8.55e-03 1.00e+00 0.0471
1510832778 11 B7H6 0.0282 1.00e+00 1.53e-01
1513070993 3 12217797  SYN2 1.00e+00 0.0369
1510433537 3 12198485  TIMP4 1.00e+00 0.0386
1510113282 8 96038252  C8orf38 1.00e+4-00 0.0408
rs15° 17 25913172  KSR1 1.00e+00 2.13e-01
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Why is eBayes more powerful than BH

Why does BH have less power than Bayes classifier?

We define the Fdr = ¢ p-value based classifier: R; = I{P; < p(q)} with p(q)
such that Fdr(P; < p(q)) = q.

1. The Fdr = q p-value based classifier is suboptimal

Pr{P; <p(q)} < Pr{fdr(Z) <d(q)}

2. The BH procedure is I{P; < p(q)}, since p(q) is derived based on an
overly conservative estimate of Fdr

I
#{p; < p}/m

therefore p(q) < p(q) and thus Pr(P; < p(q)) < Pr(P; < p(q))

Fdr(P; < p) = > Fdr(P; < p)
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Why is eBayes more powerful than BH

Return to continuous parameter-value simulation

Generate m = 10,000 iid (6;, Y;):

e Parameter 0; ~ 7(6;) with

3. 3101 1.e L0
w(6;) = 0.9- 2 +0.1- e

e Observations 7; ~ N(6;, 1)
e P-values P; = 1 — ®(|T})
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Why is eBayes more powerful than BH

BH g = 0.05 results
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Why is eBayes more powerful than BH

Theta and T densities and the local fdr
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Why is eBayes more powerful than BH

The Bayesian FDR and the BH eBayes estimate

1.0

0.6
1

Fdr / fdr

fdr
—— Fdr
- - BH Fdr estimate
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Why is eBayes more powerful than BH

Fdr = 0.05 testing procedure

Fdr / fdr
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Why is eBayes more powerful than BH

Simplified 2 GWAS analysis simulation

e 1 =1{(0,0),(3,0),(0,3),(3,3)}
7(0,0) = 0.85,7(3,0) = 0.05, 7(0,3) = 0.05,7(3,3) = 0.05

o 7Z; = (ZiI,ZiZ) with Zi %N(hl, l) and Zin %N(hz, 1)

We consider two type of null sets :

1. No association
Hyt = {(0,0)}

2. No replication
Ho" = {(0,0),(3.0),(0,3)}
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Why is eBayes more powerful than BH

Computations

fzi) = o(zi) - ¢(zi2) - 7(0,0) + d(zi1 — 3) - P(zi2) - 7(3,0)
+ ¢(zi1) - d(zi2 = 3) - 7(0,3) + H(zi1 — 3) - P(zi2 — 3) - 7(3,3)

e No association local fdr

P(zi1) - ¢(zi2) - (0, 0)

Jria (&) = f(zi)

e No replication local fdr

ZheHONR P(zit — h1) - d(zi2 — h2) - w(h1, o)

ferg(zi) = f(z)
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Why is eBayes more powerful than BH

Computations (cont.)

e Marginal p-values P;j; = 1 — ®(z;1), Pp = 1 — ®(2)

e No association p-value
P =1 —F (-2 log(P1) —2 - log(P2))

e No replication p-value PN = max (P, P,)

Yekutieli (TAU)

25/37



Why is eBayes more powerful than BH

Over conservativeness of BH Fdr estimates

Recall, the BH procedure is based on

FarPi<p) = o e

1. Actual Fdr value for testing no association

Pr(PM < p|H; = (0,0)) - Pr(H; = (0,0
PI‘(H,‘G’H{)VA|P§VA Sp) — I'( i _p‘ i (N:q )) I'( l ( 3 ))
Pr(P <p)

%
<

4P < pym "0

i =

2. Actual Fdr value for testing no replication

S ek Pr(PNR < p|H; = h) - 7(h)
Pr(H; € HYR| Py < p) = =0
Pr(Pi <p)
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eBayes more powerful than BH

Why is

No association Fdr = 0.05 Bayes classifier

27137
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Why is eBayes more powerful than BH

Fdr = 0.05 Bayes classifier and p-value based classifiers

w -
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Power: 0.112, ,0.104
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Why is eBayes more powerful than BH

Change in hyper-parameter values

o H= { (07())7 (370)7 (07 3)7 (373)}
° 7T(0 ) = 0 85
7(3.0) = 0, 7(0,3) = 0.15
M

o Zi = (Zn.Zn), Zis " N(h1,1) and Zi " N(ha, 1)
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Why is eBayes more powerful than BH

No association Fdr = 0.05 Bayes classifier

Z1
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Why is eBayes more powerful than BH

Fdr = 0.05 Bayes classifier and p-value based classifiers

w -
—— Fdr=0.05 Bayes classifier
—— Fdr=0.05 p-value based classifier
< 4 —— BH estimated Fdr=0.05 pvaIue based classifier
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Why is eBayes more powerful than BH

Difference in power between for 6 studies

Exampie 2.2. For n = 6 studies, let 7((0,0,0,0,0,0)) = 0.90 and
7((0,0,0,0,0,1)) = 0.10. Thus the first five z-scores Z, - Zs are N(0,1).
The siath z-score Zg is N(0, 1) with probability 0.9 and N(3,1) with probo-
bility 0.1, Similar o the setting (i1, o) = (0,8) in Eeample .1, the p-value
based rejection region for testing HY,  is very different than the optimal re-
jection region, which 18 only based on Zg. For o Bayes FDR of ¢ = 0.05, the
probability of the optimal rejection region was 0.066, and the probability of
the p-value based rejection region was 0,012,
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Why is eBayes more powerful than BH

Return to original hyper-parameter values

e H={(0,0),(3,0),(0,3),(3,3)}

o 7(0,0) = 0.85
7(3,0) = 0.05,7(0,3) = 0.05,
7(3,3) = 0.05

o Zi=(Zn.Zn), Zn “ N(hi,1) and Ziy % N(hy, 1)

However now we classify no replication
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Why is eBayes more powerful than BH

No replication Fdr = 0.05 Bayes classifier

z2

Z1
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Why is eBayes more powerful than BH

Bayes classifier and p-value based classifiers

z2

—— Fdr=0.05 Bayes classifier
—— Fdr=0.05 p-value based classifier
—— BH estimated Fdr=0.05 p-value based classifier
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Why is eBayes more powerful than BH

Final comments

e For scalar Z; and if H is a single point in the parameter space (i.e.
simple null hypothesis) use BH procedure

e For high dimensional Z; or non-simple H try deriving a Bayesian
classifier Prior distribution 7 (k) is the marginal distribution of H; in data
population

e R package: repFDR
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Why is eBayes more powerful than BH
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